1,191,820 research outputs found

    MEME-LaB : motif analysis in clusters

    Get PDF
    Genome-wide expression analysis can result in large numbers of clusters of co-expressed genes. While there are tools for ab initio discovery of transcription factor binding sites, most do not provide a quick and easy way to study large numbers of clusters. To address this, we introduce a web-tool called MEME-LaB. The tool wraps MEME (an ab initio motif finder), providing an interface for users to input multiple gene clusters, retrieve promoter sequences, run motif finding, and then easily browse and condense the results, facilitating better interpretation of the results from large-scale datasets

    The statistical Analysis of Star Clusters

    Full text link
    We review a range of stastistical methods for analyzing the structures of star clusters, and derive a new measure Q{\cal Q} which both quantifies, and distinguishes between, a (relatively smooth) large-scale radial density gradient and multi-scale (fractal) sub-clustering. Q is derived from the normalised correlation length and the normalised edge length of the minimal spanning tree for each cluster

    Extended Main Sequence Turn-Offs in Low Mass Intermediate Age Clusters

    Get PDF
    We present an imaging analysis of four low mass stellar clusters (< 5000 Mo) in the outer regions of the LMC in order to shed light on the extended main sequence turn-off (eMSTO) phenomenon observed in high mass clusters. The four clusters have ages between 1-2 Gyr and two of them appear to host eMTSOs. The discovery of eMSTOs in such low mass clusters - > 5 times less massive than the eMSTO clusters previously studied - suggests that mass is not the controlling factor in whether clusters host eMSTOs. Additionally, the narrow extent of the eMSTO in the two older (~ 2 Gyr) clusters is in agreement with predictions of the stellar rotation scenario, as lower mass stars are expected to be magnetically braked, meaning that their CMDs should be better reproduced by canonical simple stellar populations. We also performed a structural analysis on all the clusters and found that a large core radius is not a requisite for a cluster to exhibit an eMSTO.Comment: Astronomy & Astrophyscis, 12 pages, 7 figures, accepte

    The Geometry of Slow Structural Fluctuations in a Supercooled Binary Alloy

    Get PDF
    The liquid structure of a glass-forming binary alloy is studied using molecular dynamics simulations. The analysis combines common neighbour analysis with the geometrical approach of Frank and Kasper to establish that the supercooled liquid contains extended clusters characterised by the same short range order as the crystal. Fluctuations in these clusters exhibit strong correlations with fluctuations in the inherent structure energy. The steep increase in the heat capacity on cooling is, thus, directly coupled to the growing fluctuations of the Frank-Kasper clusters. The relaxation of particles in the clusters dominates the slow tail of the self-intermediate scattering function

    Globular Cluster Abundances from High-Resolution, Integrated-Light Spectroscopy. II. Expanding the Metallicity Range for Old Clusters and Updated Analysis Techniques

    Full text link
    We present abundances of globular clusters in the Milky Way and Fornax from integrated light spectra. Our goal is to evaluate the consistency of the integrated light analysis relative to standard abundance analysis for individual stars in those same clusters. This sample includes an updated analysis of 7 clusters from our previous publications and results for 5 new clusters that expand the metallicity range over which our technique has been tested. We find that the [Fe/H] measured from integrated light spectra agrees to ∼\sim0.1 dex for globular clusters with metallicities as high as [Fe/H]=−0.3-0.3, but the abundances measured for more metal rich clusters may be underestimated. In addition we systematically evaluate the accuracy of abundance ratios, [X/Fe], for Na I, Mg I, Al I, Si I, Ca I, Ti I, Ti II, Sc II, V I, Cr I, Mn I, Co I, Ni I, Cu I, Y II, Zr I, Ba II, La II, Nd II, and Eu II. The elements for which the integrated light analysis gives results that are most similar to analysis of individual stellar spectra are Fe I, Ca I, Si I, Ni I, and Ba II. The elements that show the greatest differences include Mg I and Zr I. Some elements show good agreement only over a limited range in metallicity. More stellar abundance data in these clusters would enable more complete evaluation of the integrated light results for other important elements.Comment: Accepted for publication in ApJ, 37 pages, 13 tables, 29 figure

    The stellar mass fraction and baryon content of galaxy clusters and groups

    Full text link
    [Abridged] The analysis of a sample of 52 clusters with precise and hypothesis-parsimonious measurements of mass shows that low mass clusters and groups are not simple scaled-down versions of their massive cousins in terms of stellar content: lighter clusters have more stars per unit cluster mass. The same analysis also shows that the stellar content of clusters and groups displays an intrinsic spread at a given cluster mass, i.e. clusters are not similar each other in the amount of stars they contain, not even at a fixed cluster mass. The stellar mass fraction depends on halo mass with (logarithmic) slope -0.55+/-0.08 and with 0.15+/-0.02 dex of intrinsic scatter at a fixed cluster mass. The intrinsic scatter at a fixed cluster mass we determine for gas mass fractions is smaller, 0.06+/-0.01 dex. The intrinsic scatter in both the stellar and gas mass fractions is a distinctive signature that the regions from which clusters and groups collected matter, a few tens of Mpc, are yet not representative, in terms of gas and baryon content, of the mean matter content of the Universe. The observed stellar mass fraction values are in marked disagreement with gasdynamics simulations with cooling and star formation of clusters and groups. We found the the baryon (gas+stellar) fraction is fairly constant for clusters and groups with 13.7<lg(mass)<15.0 solar masses and it is offset from the WMAP-derived value by about 6 sigmas. The offset could be related to the possible non universality of the baryon fraction pointed out by our measurements of the intrinsic scatter. Our analysis is the first that does not assume that clusters are identically equal at a given halo mass and it is also more accurate in many aspects. The data and code used for the stochastic computation are distributed with the paper.Comment: MNRAS, in pres

    Extended main sequence turnoff as a common feature of Milky Way open clusters

    Get PDF
    We present photometric analysis of twelve Galactic open clusters and show that the same multiple-population phenomenon observed in Magellanic Clouds (MCs) is present in nearby open clusters. Nearly all the clusters younger than ∼\sim2.5 Gyr of both MCs exhibit extended main-sequence turnoffs (eMSTOs) and all the cluster younger than ∼\sim700 Myr show broadened/split main sequences (MSs). High-resolution spectroscopy has revealed that these clusters host stars with a large spread in the observed projected rotations. In addition to rotation, internal age variation is indicated as a possible responsible for the eMSTOs, making these systems the possible young counterparts of globular clusters with multiple populations. Recent work has shown that the eMSTO+broadened MSs are not a peculiarity of MCs clusters. Similar photometric features have been discovered in a few Galactic open clusters, challenging the idea that the color-magnitude diagrams (CMDs) of these systems are similar to single isochrones and opening new windows to explore the eMSTO phenomenon. We exploit photometry+proper motions from Gaia DR2 to investigate the CMDs of open clusters younger than ∼\sim1.5 Gyr. Our analysis suggests that: (i) twelve open clusters show eMSTOs and/or broadened MSs, that cannot be due neither to field contamination, nor binaries; (ii) split/broadened MSs are observed in clusters younger than ∼\sim700 Myr, while older objects display only an eMSTO, similarly to MCs clusters; (iii) the eMSTO, if interpreted as a pure age spread, increases with age, following the relation observed in MCs clusters and demonstrating that rotation is the responsible for this phenomenon.Comment: 17 pages, 42 figures, 1 table, accepted for publication in ApJ (31/10/2018

    New Non-Parametric Approach to Determine Proper Motion of Star Clusters

    Full text link
    The bulk motion of star clusters can be determined after careful membership analysis using parametric or non-parametric approaches. This study aims to implement non-parametric membership analysis based on Binned Kernel Density Estimator which accounts measurements errors (simply called BKDE-e) and to determine the average proper motion of each cluster. This method is applied to 178 selected star clusters with angular diameter less than 20 arc minutes. Proper motion data from UCAC4 are used for membership determination. Non-parametric analysis using BKDE-e successfully determined the average proper motion of 129 clusters, with good accuracy. Compared to COCD and NCOVOCC, there are 79 clusters with less than 3σ3\sigma difference. Moreover, we are able to analyse distribution of the member stars in vector point diagram which is not always normal distribution.Comment: 2 pages, 5 figures, APRIM 201
    • …
    corecore